skip to main content


Search for: All records

Creators/Authors contains: "Kakekhani, Arvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The elucidation of structure-to-function relationships for two-dimensional (2D) hybrid perovskites remains a primary challenge for engineering efficient perovskite-based devices. By combining insights from theory and experiment, we describe the introduction of bifunctional ligands that are capable of making strong hydrogen bonds within the organic bilayer. We find that stronger intermolecular interactions draw charge away from the perovskite layers, and we have formulated a simple and intuitive computational descriptor, the charge separation descriptor (CSD), that accurately describes the relationship between the Pb-I-Pb angle, band gap, and in-plane charge transport with the strength of these interactions. A higher CSD value correlates to less distortion of the Pb-I-Pb angle, a reduced band gap, and higher in-plane mobility of the perovskite. These improved material properties result in improved device characteristics of the resulting solar cells.

     
    more » « less
  2. null (Ed.)
    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields ( e.g. , temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO 3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NO x direct decomposition and SO 2 oxidation into SO 3 . The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. 
    more » « less
  3. Abstract

    The main drawbacks of today's state‐of‐the‐art lithium–air (Li–air) batteries are their low energy efficiency and limited cycle life due to the lack of earth‐abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3P) nanoparticles with an exceptional activity—ORR and OER current densities of 7.21 and 6.85 mA cm−2at 2.0 and 4.2 V versus Li/Li+, respectively—in an oxygen‐saturated non‐aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance—Tafel slopes of 35 and 38 mV dec−1for ORR and OER, respectively—resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li–air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.

     
    more » « less